Differentiable transformation groups on homotopy spheres.
نویسندگان
چکیده
منابع مشابه
Differentiable Z9 Actions on Homotopy Spheres
The results of [4] proved that many exotic spheres do not admit smooth actions of relatively high-dimensional compact Lie groups (all group actions considered in this paper are assumed to be effective). It was clear that stronger results should hold in certain cases, and this was confirmed in [5]. A notable feature of [5] is the use of nonexistence theorems for certain smooth circle actions to ...
متن کاملLectures on Groups of Homotopy Spheres
Kervaire and Milnor's germinal paper [15], in which they used the newly-discovered techniques of surgery to begin the classification of smooth closed manifolds homotopy equivalent to a sphere (homotopy-spheres), was intended to be the first of two papers in which this classification would be essentially completed (in dimensions > 5). Unfortunately , the second part never appeared. As a result, ...
متن کاملOn the homotopy groups of spheres in homotopy type theory
The goal of this thesis is to prove that π4(S) ' Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the basic concepts of homotopy type theory, and we prove some well-known results about the homotopy groups of spheres: the computation of the homotopy groups of the circle, the triviality of those of the form πk(S) with k < n, and...
متن کاملGroups of Homotopy Spheres: I
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملA new family in the stable homotopy groups of spheres
Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1967
ISSN: 0026-2285
DOI: 10.1307/mmj/1028999655